Atomistry » Titanium » Chemical Properties » Addition Compounds of Titanium Tetrachloride
Atomistry »
  Titanium »
    Chemical Properties »
      Addition Compounds of Titanium Tetrachloride »

Addition Compounds of Titanium Tetrachloride

Besides hydro-chlorotitanic acid and its salts, titanium forms numerous addition products with ammonia and other bases, as well as with various acid chlorides.

With ammonia there are the compounds TiCl4.8NH3 and TiCl4.6NH3, and perhaps TiCl4.4NH3.

The compound TiCl4.8NH3 is formed as a yellow powder 2 when dry ammonia reacts with titanium tetrachloride suspended in dry ether, and also when the tetrachloride is shaken for twelve hours with liquid ammonia. It is unstable, readily giving up ammonia. The compound TiCl4.6NH3 results when gaseous ammonia reacts with the tetrachloride vapour; it is an amorphous, dark yellow powder which in presence of a little moisture is readily hydrolysed, yielding titanic acid, ammonium chloride, and ammonia. Liquid ammonia reacts with either of these compounds, yielding dark yellow titanamide, Ti(NH2)4, and ammonium chloride.

A pyridine compound, TiCl4.6C5H5N, exists, analogous to the ammonia compound of similar composition; and compounds with acid chlorides, such as TiCl4.POCl3, TiCl4.2POCl3, TiCl4.PCl3, TiCl4.PCl5, as well as additive compounds with numerous types of organic compounds, are known.

Organic substitution products of titanium tetrachloride have been prepared by Dilthey and his collaborators. For example, acetyl-methylacetone forms the compound [Ti(OCMe: CMeAc)3Cl]2.TiCl4 or [Ti(OCMe: CMeAc)3]2TiCl6. Such compounds are called titanonium salts; and there exist corresponding siliconium and boronium compounds.

Last articles

Zn in 9JYW
Zn in 9IR4
Zn in 9IR3
Zn in 9GMX
Zn in 9GMW
Zn in 9JEJ
Zn in 9ERF
Zn in 9ERE
Zn in 9EGV
Zn in 9EGW
© Copyright 2008-2020 by atomistry.com
Home   |    Site Map   |    Copyright   |    Contact us   |    Privacy